ETUDE DU DIAGRAMME D'EQUILIBRE DU SYSTEME NaPO₃--Pr(PO₃)₃

M. Férid^{*}, D. Ben Hassen-Chehimi^{**}, N. Kbir-Ariguib^{*} et M. Trabelsi-Ayedi^{**}

*Unite de Chimie Appliquee, Institut National de Recherche Scientifique et Technique, B.P. 95 Hammam-lif 2050, Tunis, Tunisie

**Ecole Normale Superieure, Zarzouna, Bizerte, Tunisie

(Reçu le 14 Janvier 1993)

Abstract

The NaPO₃-Pr(PO₃)₃ system was studied by microdifferential thermal analysis (DTA), IR and X-ray diffraction spectroscopies. The only new compound observed in the system is NaPr(PO₃)₄, which melts incongruently at 1149 K. A eutectic appears at 5% Pr(PO₃)₃ at 901 K. The new compound NaPr(PO₃)₄ was characterized by means of powder X-ray diffraction and IR absorption spectroscopy. NaPr(PO₃)₄ is a NaLa(PO₃)₄ isotype; it crystallizes in the monoclinic system P2₁/c with a=12.328(7), b=13.130(5), c=7.231(5) Å, $\beta=126^{\circ},18(5)$, Z=4, V=945 Å³.

Keywords: DTA, IR, NaPO₃-Pr(PO₃)₃ system, X-ray

Introduction

Dans le cadre d'une étude générale des phosphates mixtes apparaissant dans les systèmes du type $M^{I}PO_{3}$ -Lanthanide (PO₃)₃ [1-6], nous décrivons les résultats de l'étude des équilibres solide-liquide du système NaPO₃-Pr(PO₃)₃.

Techniques expérimentales

Le diagramme d'équilibre solide-liquide du système NaPO₃-Pr(PO₃)₃ a été établi par microanalyse thermique différentielle avec une vitesse de chauffage de 10 K/min, à l'aide des microanalyseurs SETARAM M5 et RIGAKU-PTC-10A. La précision sur les mesures de température est de ± 5 K jusqu'à 1273 K et ± 10 K pour les températures supérieures. Les échantillons utilisés, de l'ordre de 25 mg, sont des mélanges de polyphosphates de sodium NaPO₃ et de praséodyme PrP₃O₉·3H₂O.

Les échantillons sont finement broyés et recuits dans des creusets en platine. Des thermocouples Pt/Pt-Rh, Pt/platinel, étalonnés aux températures de fusion ou de transition de phases de corps purs, sont utilisés pour détecter les accidents thermiques. L'alumine α -Al₂O₃ est choisie comme matériau référence. Les mélanges riches en phosphate de sodium (0-50% Pr(PO₃)₃) sont recuits à 773 K, les autres échantillons à 973 K pendant quelques semaines.

Les spectres de diffraction des rayons-X sont enregistrés à l'aide d'un diffractomètre PHILIPS PW 1050/70 à la vitesse de $2\theta = \frac{1}{8}$ /min utilisant la longueur d'onde K_{a1} du cuivre.

Les spectres d'absorption IR des échantillons pastillés dans KBr sont enregistrés à l'aide d'un spectromètre PERKIN ELMER IR 783.

Produits utilisés

Les produits de base, utilisés pour l'établissement du diagramme d'équilibre NaPO₃- $Pr(PO_3)_3$, ont été préparés suivant des procédures connues.

Le polyphosphate de sodium NaPO₃ est préparé [7] à partir de NaH₂PO₄ calciné à 823 K.

Le tricyclophosphate de praséodyme trihydraté $PrP_3O_9 \cdot 3H_2O$ est préparé selon la méthode de Serra [8]. Une solution N/10 de tricyclophosphate de sodium Na₃P₃O₉ est mélangée, lentement sous agitation mécanique, avec une solution N/10 de chlorure de praséodyme PrCl₃. Le phosphate PrP₃O₉ \cdot 3H₂O précipite après quelques minutes d'agitation. Après filtration et lavage à l'eau, le précipité est séché à l'air.

L'étude par ATG/ATD couplées, diffraction des rayons X, par spectroscopie IR montre la déshydratation totale à 573 K du composé hydraté $PrP_3O_9 \cdot 3H_2O$ et la formation de $Pr(PO_3)_3$ [9].

Résultats expérimentaux

Etablissement du diagramme

Les résultats expérimentaux sont groupés dans le tableau 1.

Sur la figure 1, nous donnons la représentation graphique du diagramme d'équilibre NaPO₃-Pr(PO₃)₃. Dans les conditions opératoires, il apparaît un composé intermédiaire à fusion non congruente NaPr(PO₃)₄ qui se décompose à 1149 K suivant la réaction péritectique:

$$NaPr(PO_3)_4 \rightarrow Pr(PO_3)_3 + liquide$$

Le mélange eutectique (5% en Pr(PO₃)₃) fond à 901 K.

Les phases solides en équilibre dans les domaines I à V (fig. 1) ont été identifiées par leurs spectres de diffraction X et d'absorption IR des mélanges correspondant à ces domaines.

Accident thermique	% Molaire Pr(PO3)3	Température / K
Fusion de NaPO ₃	0	917
Palier eutectique	5	901
Début du palier péritectique	27	1149
Décomposition de NaPr(PO ₃) ₄	27–100	1149
Fusion de Pr(PO ₃) ₃	100	1529

Tableau 1 Principales caractéristiques thermiques du diagramme NaPO₃-Pr(PO₃)₃

Fig. 1 Représentation graphique du diagramme d'équilibre du système NaPO₃-Pr(PO₃)₃
(I) NaPO₃+ liquide; (II) NaPO₃+ NaPr(PO₃)₄; (III) NaPr(PO₃)₄+ liquide;
(IV) NaPr(PO₃)₄+Pr(PO₃)₃; (V) Pr(PO₃)₃+ liquide; (VI) liquide

J. Thermal Anal., 42, 1994

$d_{obs}(A)$	$d_{cal}(\mathbf{A})$	hkl	lobs	$d_{obs}(\mathbf{A})$	$d_{cal}(\mathbf{A})$	h k l	I obs
6.56	6.56	020	92	2.427	2.428	032	10
4.98	4.97	200	24	2.394	2.395	051	12
4.64	4.65	210	31	2.332	2.333	340	22
4.37	4.37	$\overline{2} \ \overline{2} \ 1$	26	2.327	2.326	420	16
4.011	4.006	1 3 0	43	2.210	2.209	151	14
3.970	3.965	220	100	2.189	2.188	0 0 0	12
3.745	3.744	<u>1</u> 31	18	2.163	2.163	430	12
3.506	3.507	2 3 1	18	2.078	2.079	352	10
3.285	3.285	<u>1</u> 12	20	2.061	2.063	523	16
3.220	3.216	310	18	1.905	1.905	243	12
3.169	3.167	222	14	1.897	1.896	411	12
3.119	3.117	140	10	1.847	1.844	<u>6</u> 21	16
3.024	3.021	322	14	1.819	1.815	171	10
2.992	2.995	<u>3</u> 31	14	1.809	1.807	404	10
2.910	2.918	002	14	1.752	1.753	551	12
2.863	2.864	2 4 1	16	1.748	1.747	253	16
2.743	2.744	$\overline{4} \ 2 \ 1$	51	1.708	1.706	371	12
2.687	2.686	332	12	1.661	1.658	600	80
2.644	2.643	330	18	1.657	1.658	641	10
2.559	2.560	141	12	1.664	1.643	460	16
2.539	2.539	150	20	ı	1	1	I

916

FERID et al.: DIAGRAMME D'EQUILIBRE

Tableau 2 Dépouillement du diagramme de poudre de NaPr(PO3)4

Préparation du composé NaPr(PO₃)₄

Une poudre polycristalline de $NaPr(PO_3)_4$ a été obtenue par mélange stoechiométrique de $NaPO_3$ et PrP_3O_9 ·3H₂O.

Les monocristaux servant à l'étude cristallographique ont été préparés différemment. Une calcination pendant une semaine du mélange H₃PO₄ (85%), Na₂CO₃ et de Pr₆O₁₁ dans les rapports molaires Pr/Na/P=1/20/160 à 553 K dans un creuset en carbone vitreux, conduit à la formation de monocristaux qui sont extraits du mélange par lavage à l'eau chaude.

Etude cristallographique de NaPr(PO₃)₄

L'étude du diagramme de diffraction des rayons X (tableau 2) des cristaux obtenus montre que le composé NaPr(PO₃)₄ est isotype de NaLa(PO₃)₄ [10] qui cristallise dans le système monoclinique P2₁/c. Un affinement par moindres carrés des données angulaires du diagramme de poudre de NaPr(PO₃)₄ conduit aux valeurs suivantes des paramètres de réseau:

a=12,328(7), b=13,130(5), c=7,231(5) Å, $\beta=126^{\circ},18(5), Z=4, V=$ 945 Å³, le groupe d'espace est P2₁/c.

Spectre d'absorption IR de NaPr(PO₃)₄

Le spectre d'absorption en lumière IR du composé NaPr(PO₃)₄ (fig. 2) confirme l'isotypie avec le composé NaLa(PO₃)₄ et laisse supposer une structure en chaînes infinies de tétraèdres PO₄ reliés par des ponts oxygène. En effet, ceci est confirmé par la présence d'une large bande d'absorption à 900 cm⁻¹ correspondant à v_{as} (POP), du multiplet v_s (POP) entre 680–810 cm⁻¹ et du dédouble-

Fig. 2 Spectre d'absorption IR du phosphate condensé mixte NaPr(PO₃₎₄

ment des vibrations de déformations des tétraèdres PO_4 entre 450 et 600 cm⁻¹ [11, 12].

Fréquences / cm ⁻¹	Nature de vibration	
1310-1270-1250-1220-1200	v _{as} POO	
1160-1135-1120-1100-1075	v, POO	
1060-1020-920	Vas POP	
795-755-725-685	v _s POP	
580-570-550-530-520-470-450	δ_{as} POO	
<400	δ _{as} POP	

Tableau 3 Fréquences (cm⁻¹) des bandes d'absorption IR du composé NaPr(PO₃)₄

Le dépouillement des fréquences des bandes d'absorption IR du composé $NaPr(PO_3)_4$ est donné dans le tableau 3.

Bibliographie

1 M. Férid, N. Kbir-Ariguib et M. Trabelsi, J. Solid State Chem., 38 (1981) 130.

- 2 D. Ben Hassen, N. K. Ariguib et M. Trabelsi, Thermochim. Acta, 65 (1983) 35.
- 3 M. Férid, N. Kbir-Ariguib et M. Trabelsi, Thermochim. Acta, 81 (1984) 175.
- 4 M. Férid, N. Kbir-Ariguib et M. Trabelsi, Mater. Chem. Phys., 10 (1984) 175.
- 5 M. Férid, N. Kbir-Ariguib et M. Trabelsi, J. Solid State Chem., 69 (1987) 1.
- 6 M. Ferid, N. Kbir-Ariguib et M. Trabelsi, Thermochim. Acta, 136 (1988) 139.
- 7 Y. V. Karyakin et I. Angelov, "Chistye Khimicheskie Reaktvy", Goskhimizdat, Moscow 1955.
- 8 A. Serra et E. Giesbrecht, J. Inorg. Chem., 30 (1968) 793.
- 9 Travail en cours de publication.
- 10 D. Ben Hassen, N. K. Ariguib, M. Dabbabi et M. Trabelsi, C. R. Acad. Sci., 294 (1982) 375.
- 11 D. E. C. Corbridge et E. J. Lowe, J. Chem. Soc., (1954) 493.
- 12 V. W. Bues et H. W. Gherke, Z. Anorg. Allg. Chem., 228 (1956) 291.

Zusammenfassung — Mittels Mikrodifferential-Thermoanalyse (DTA) und Röntgendiffraktion wurde das System NaPO₃-Pr(PO₃)₃ untersucht. Die einzig neue, in diesem System beobachtete Verbindung ist NaPr(PO₃)₄ mit einem inkongruenten Schmelzpunkt bei 1149 K. Ein Eutektikum tritt mit 5% Pr(PO₃)₃ bei 901 K auf. Die neue Verbindung NaPr(PO₃)₄ wurde mit Hilfe des Debye-Scherrer-Verfahrens und der IR Absorptionsspektroskopie charakterisiert. NaPr(PO₃)₄ ist ein Isotyp von NaLa(PO₃)₄; es kristallisiert im monoklinen System P2₁/c mit a=12.328(7), b=13.130(5), c=7.231(5)Å, $\beta=126,18(5)$, Z=4, V=945Å³.

J. Thermal Anal., 42, 1994